RAPID COMMUNICATIONS

Signal detection by means of phase coherence induced through phase resetting
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Detection and location of moving prey utilizing electrosense or mechanosense is a strategy commonly
followed by animals which cannot rely on visual sense or hearing. In this paper we consider the possibility to
detect the source of a localized stimulus that travels along a chain of detectors at constant speed. The detectors
are autonomous oscillators whose frequencies have a given natural spread. The detection mechanism is based
on phase coherence which is built up by phase resetting induced by the passing stimulus.
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The ability to detect, locate, and capture prey is vital foridentically distributed according to a Gaussian with mEgn
survival. Many animals accomplish these tasks using visuadnd standard deviatio () = 7).
or acoustic information. However, species that have devel- An appropriate quantity to measure the degree of phase
oped in an environment where these senses are obscur@herence among these rotors is the complex variable,
have to rely on alternative mechanisms. For example, the
paddlefish(Polyodon spathulg found in the river basins of 1N ] )
the Midwestern United States and in the Yangtze River in Z0=y gl exliy(O]=ROexdie®]. (1)
China, makes use of a passive electrosensory syfiém

Another example is the weakly electric fish that combinesryis global order parameter contains both the information
active and passive electrosense with a mechanosensory Igfout the instantaneous collective phdse) and the instan-
eral line systen{2]. In these animals, receptors transform taneous degree of phase coherence measured by the modulus

stimuli into electric signals which excite the terminals of R(t) at timet. Its square can be expressed in several ways:
primary afferent neurons. These afferents are well known to

exhibit periodic spike patterr$]. 1 N 2 [N 2
In the last decades a lot of research has been devoted to R?(t)= —2[ Z cog (t)]| + E sin ¢ ()] }
the details of information processing on the neural level, i.e., N7 {Lk=1 k=1

the dynamics of single neurons or neural networks. However, @)
at the behavioral level still many open problems exist. Since N

the performance and the analysis of experiments usually in-

volve an enormous effort, efficient and tractable models are _@L’,E_l cog ¢lt)— 'ﬂ'(t)]} ©)
indispensable, both for planning and interpretation.

Here we present an idealized, however, analytically trac-
table model, proposing a mechanism for the detection of a —
localized stimulus. This stimulus is passing an array of re-
ceptors, which we model as phase oscillators. To measure the
degree of coherence between the oscillators we choose thAdis quantity is termed synchronization index since it is
well known synchronization indepd]. First we examine the widely used in the description of synchronization processes
influence of a random initial distribution of the oscillator [4]. From Eqgs(2) and(3) it is obvious that G=R(t)<1 with
phases on the synchronization index and introduce a thresi®(t) =1 indicating perfect coherence.
old value to distinguish a stimulus from a “false alarm.”  We initialize the array by randomly selecting a phase for
Then we investigate the influence of our model parametereach of the rotors according to the uniform distribution on
for the detection of a moving stimulus. [0,27). Thus, the quantiyRy=R(t=0) is a random vari-

We consider a linear chain dd uncoupled phase rotors able. Its density contains important information because even
which are characterized by the set of variahlgs . . . .y . in the absence of any signal the array of rotors will generate
The rotors are aligned at equal distance along an axis afonvanishing values dR,. These have to be discriminated
length L, i.e., the position of rotork is x,=(N—k)/(N  from values ofR(t) which significantly indicate coherence
—1)L, k=1,... N. Each rotor has its own natural fre- induced by the passing stimulus. Figure 1 shows numerically
qguency(), which, in the absence of a stimulus, determinesestimated densities, whei¢=10,100,1000,10 000 equidis-
the simple linear growth of the phase, i.¢q(t)= (0) tributed phases were used to compute a single realization of
+Q,t. We assume the frequencies to be independently anthe random variabldR,. An analytic expression for these

distributions can be derived by applying the central limit
theorem(Lindenberg-Ley theorem to the following pair of
*Electronic address: freund@physik.hu-berlin.de random variables:

Z|l

2 N N
+— 2 > cof it — ()], (4)
N k=1 >k
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FIG. 1. The density of the random varialiRy for differentN
=10,100,1000,10 00Qtop down. The dots indicate the result of
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FIG. 2. Sketch of the setup. The stimulus moves at constant
speedv relative to the oscillator chain. Each time it passes an os-
cillator the phase is reset #6*.

Xy

A standard model describing phase resetting by an exter-
nal stimulus of strength is given by the following phase

numerical simulations whereas the full line identifies the Rayleighgynamics[6]:

distributions(7). Vertical lines mark the threshold set by the value
2/\/ﬁ, which corresponds to a 2% level of false alarm.

N

> sify(0)], (5

k=1

N 1
2 cod(0)], Yn=y
k=1

1
XN:N

which yields for largeN the limiting density[5]

p(Xn=%Yn=Y)= (N/m) exd —N(x*+y?)].  (6)
Changing to polar coordinate®{,®,) and integrating over
the angle®, immediately leads to the Rayleigh distribution

(Fig. 1)

pn(Ro) =2NRy exp( —NRG). (7)
Mean and variance of this distribution read
Jr 1 ) ] 1
<Ro>—7\/—ﬁy <AR0>—{1—Z}N- (8)
The integral

a(Ry) = f: 2NR, exp(—NR2)dRy=exp( —NRZ) (9)

can be used to define a threshold vakig by demanding
that a(Ry,), which is the probability for false alarm, be less
than some fixed small number. For instanRg= 2/\/N cor-
responds toa(Ry)<2% which means values larger than
2/\JN occur by random configuration with a probability of
less than 2%. In what follows we will usBy=2/yYN to

=Q+1 cosy. (10)
This dynamics can be illustrated as the overdamped motion
in a tilted corrugated potential landscapel f () no troughs
(minima) and barriergmaxima exist and the phase contin-
ues cycling forward  >0) at varying speed. Fdr>) two
fixed points emerge, which correspond to a minimumrat
—arccos{)/1) and a maximum air+ arccos()/1). For con-
stantl the phase settles in the minimum (mae)2regardless

of the initial position, which means the phase eventually is
reset to the corresponding valyé = w—arccos(}/1). The
situation is harder to analyze with a time varying stimulus
I(t); the net effect will depend on many details of the stimu-
lus, e.g., the time scale of variation, the height of the signal
peak, etc.

Our detection setup would require to considérsuch
phase equations each with its own time varying stimulus
I (Xo—X,—vt), wherexy, andv are the initial position(at
time t=0) and the constant velocity of the traveling stimu-
lus, respectively. Irrespective of the details, the equation of
motion will be too complicated to be solved analytically in
closed form. If, however, the peak value of the stimulus is
sufficiently high and the duration is short, we can simplify
the resetting mechanism: The passing stimulus resets the
phaseis, (t) to some global valug/* the very moment it is
at positionx,, i.e., the reset is instantaneous. After this reset
the phase again increases linearly with its natural frequency
Q. The situation is sketched in Fig. 2. The history of phase
. can thus be written as

v(t)= PO (t—t), =t (D
(forallk=1, ... N), wheret, is the time when the stimulus

discriminate stimuli against the random configuration back{passes the oscillatde Substituting this into Eq4) we find

ground.

the following value of the synchronization index:
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1 2
Rz(t):N+WZ{Skk(t)+SkN(t)+SNN(t)} (12 0.1

in the time intervalt, <t<t,,,, where we denote

k k
=2 > cofQ(t—t)—Q;(t—t))], (13

i=1j>i 0.05

d/m

k N
Sal)=2, 2 cofy* +Qi(t—t) =40~ Qytl. (14

pzd

N
= 212 cog 1(0)+Q;t—;(0)— Q;t]. (15) 0 0.2 0.4 i 0.6 0.8 1
i=k+1 j>i

These expressions depend on the initial phasé3) and the o1g

natural frequencie$);. We consider both quantities to be
random parameters of the model. To characterize the net ef-
fect of observing many realizations, i.e., to evaluate the mean
performance of many individuals, we average the synchroni-
zation index over both the initial phaseguidistributegland »
the natural frequencid§&aussian The first average over the
phases yields¢for t,<t<t, ;)

0.05

2 k k
—22 Z. cog Q;(t—t) — Q;(t—t))].

Z|I—‘

(RA(D)

1 L
(16) 00 0.2 0.4 0.6 0.8 1
x/L

Note that the value ofy* is irrelevant for this expression.

The second average over the natural frequencies results in FIG. 3. Regions in which prey is detected in thej plane
defined by the demand thgR?(x))>Ra =4/N. Top panel forN

=100, »=0 (black), and =0.01 (checkered plotted on tppThe
OiQo(t t)] bottom panel compares the region foN=10 and 7z
=0, 0.01, 0.02, 0.03light to dark gray plotted on top of each

1 2 &
(RE(O)=+ WZ

va

othep with N=100 andz=0.01(checkeregl Each time the stimu-

><exp{ £)2+ (t— t )21 (17) lus passes a detectdfR(x)) changes discontinously and decays
for »>0.
In the following we relate time to the position of the stimulus 1 k(x) k(x)
X(1), (REON= WZZ 2. cof(j=i)x]
t=[Xo—x(t)]/v. (18
cod - i), o
We can then derive an expression that reflects how the twice

averaged global synchronization index varies as a function of

the position of the stimulus over the linear detector chain,Where

namely, 2

X 1?2
—X—(N—J)} (21)

X
g(x,i,j)= {——(N—I)

1 9 K K
{(RE(X)) = NN 2 >c S{—(X. X;) o
=1j>i andk(x) =min{int(N—x/Ax),N}. The parametex turns out
212 to be related to the ratio of the travel time between two
xexn — 77_22 [(x—xi)2+(x—xj)2]], neighboring oscillatora T=Ax/v and the mean rotation pe-
2v riod To=2m/Qy, i.e., k=27ATIT,. It is useful to writex
(19) =2mm+ 6, whereme N and §e[0,27).

Equations(20) and (21) present the central result of our
for X, 1 <x=<x,. Assuming the oscillators to be distributed model. The detection regions in thes plane, i.e., where
along the linear chain in an equidistant manner, ig., {R?(x,)) is larger than the threshold vaIL}é[Zh=4/N, is
=(N—Kk)Ax for k=1, ... N with Ax=L/(N—1), we find  shown in Fig. 3 folN=100(top) andN= 10 (bottom. It can
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FIG. 4. Variation of the global synchronization index as a func-  FIG. 5. Spatial variation of the global synchronization index as
tion of the stimulus positiorx in the case of vanishing frequency a function of the stimulus positior in the case of varying fre-
spreadn=0 for N=100. Depending on the detuning paramefer quency spread; for slight detuning, i.e.,8/7=0.01, and form
constructive or destructive effects of the array or rotors can be=1 andN=100. An increasing spread erodes the detection mecha-
observed:§/7r=0, 0.01, 0.02, 0.03, 0.04 shown as solid, dotted,nism: =0, 0.005, 0.01, 0.015 shown as solid, dotted, dashed,
dashed, long-dashed, dot-dashed lines, respectively. The solid hoteng-dashed, respectively. The solid horizontal line maRé
zontal line marksR%=4/N. =4/N.

be seen that detection works only as long as detuning, qua,;ir_]echanismdis rf';g[he_r sefnsitiv? with respsg; t(; the ‘.’;’Iidth of the
tified by 8, and frequency spread, coded by are not too requency distribution for a large numb@r of oscillators.

large. Moreover, we find that the detection region shrinks mHowever, we would like to point out, that the biological

the & direction, but enlarges in thedirection with increasing relevance is not eradicated by this finding, since evolutionary

. : . optimization offers an explanation how the confined param-
N, i.e., detection already works when the stimulus has passeéfer range might have bel?en realized P

only a small number of oscillators. For smajland small In conclusion, we have presented a simplified but analyti-
we can consider the following limiting cases._Flrst let us deaL:a”y tractable model for signal detection, which works by

with the case of zero frequency spread, i.§=0. The  creating significant coherence in a chain of phase oscillators.
double sum over cosines can be performed yielding the folThis coherence is induced by a strongly localized stimulus

lowing expression: that travels at constant speed and resets phases instanta-
neously. The ability to detect a stimulus rapidly is balanced
(R2(%0), o= N—k+[1—cogkd)]/[1-cogJ)] by the sensitivity to variations in the oscillator frequencies or
7=0 N2 ' deviations from the optimal velocity. The variations in the

(22) frequencies, however, guarantee a fast desynchronization af-
ter the stimulus has passed.

which we exemplify foN= 100 in Fig. 4. Depending on the  Although our approach concentrates on seemingly crude
detuning parametes, constructive or destructive effects assumptions, it catches the main features of prey detection.
show up. Introducing the frequency spreadt O erodes both  Future experimental studies have to reveal in which direction
the constructive and destructive effects. Note that the cycléhis model has to be extended to account for given biological
numberm matters if >0 whereas it is irrelevant for the applications.
casen=0. In Fig. 5 we exemplify how the detection curve  We thank A. Neiman L. Wilkens, and M. Timme for use-
for N=100,m=1, and a detuning value 0§=0.01 is  ful discussions. J.F. acknowledges support by the DAAD
pushed below the detection threshold by an increasing freNFS Project No. D/0104610This work was supported by
guency spready. These results indicate that the detectionthe DFG, SFB 555.

[1] L. wilkenset al,, J. Exp. Biol.204, 1381(2001); W. Wojtenek, Maler, J. Exp. Biol.202 1255(1999.
X. Pei, and L. Wilkensjbid. 204, 1399(2001). [4] A. Pikovsky, M. Rosenblum, and J. Kurtt8ynchronizatiorA
[2] K.-T. Shiehet al, J. Exp. Biol.199, 2383(1996; M.E. Nelson Universal Concept in Nonlinear Scienc&ambridge Univer-
and M.A. Maclver,ibid. 202, 1195(1999; G. von der Emde, sity Press, Cambridge, 2001

[5] M. Fisz, Probability Theory and Mathematical Statistics
(Wiley, New York, 1963.

[6] P. Tass,Phase Resetting in Medicine and Biolo¢fypringer,
Berlin, 2001; A.T. Winfree, J. Theor. Biol28, 327 (1970.

ibid. 202 1205(1999.
[3] A. Neiman and D.F. Russell, Phys. Rev. L&, 3443(2002);
A. Neimanet al, ibid. 82, 660 (1999; R.W. Turner and L.

040901-4



