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Signal detection by means of phase coherence induced through phase resetting
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Detection and location of moving prey utilizing electrosense or mechanosense is a strategy commonly
followed by animals which cannot rely on visual sense or hearing. In this paper we consider the possibility to
detect the source of a localized stimulus that travels along a chain of detectors at constant speed. The detectors
are autonomous oscillators whose frequencies have a given natural spread. The detection mechanism is based
on phase coherence which is built up by phase resetting induced by the passing stimulus.
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The ability to detect, locate, and capture prey is vital
survival. Many animals accomplish these tasks using vis
or acoustic information. However, species that have de
oped in an environment where these senses are obsc
have to rely on alternative mechanisms. For example,
paddlefish~Polyodon spathula!, found in the river basins o
the Midwestern United States and in the Yangtze River
China, makes use of a passive electrosensory system@1#.
Another example is the weakly electric fish that combin
active and passive electrosense with a mechanosensor
eral line system@2#. In these animals, receptors transfor
stimuli into electric signals which excite the terminals
primary afferent neurons. These afferents are well known
exhibit periodic spike patterns@3#.

In the last decades a lot of research has been devote
the details of information processing on the neural level, i
the dynamics of single neurons or neural networks. Howe
at the behavioral level still many open problems exist. Sin
the performance and the analysis of experiments usually
volve an enormous effort, efficient and tractable models
indispensable, both for planning and interpretation.

Here we present an idealized, however, analytically tr
table model, proposing a mechanism for the detection o
localized stimulus. This stimulus is passing an array of
ceptors, which we model as phase oscillators. To measure
degree of coherence between the oscillators we choose
well known synchronization index@4#. First we examine the
influence of a random initial distribution of the oscillato
phases on the synchronization index and introduce a thr
old value to distinguish a stimulus from a ‘‘false alarm
Then we investigate the influence of our model parame
for the detection of a moving stimulus.

We consider a linear chain ofN uncoupled phase rotor
which are characterized by the set of variablesc1 , . . . ,cN .
The rotors are aligned at equal distance along an axis
length L, i.e., the position of rotork is xk5(N2k)/(N
21)L, k51, . . . ,N. Each rotor has its own natural fre
quencyVk which, in the absence of a stimulus, determin
the simple linear growth of the phase, i.e.,ck(t)5ck(0)
1Vkt. We assume the frequencies to be independently
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identically distributed according to a Gaussian with meanV0
and standard deviationDV5hV0.

An appropriate quantity to measure the degree of ph
coherence among these rotors is the complex variable,

Z~ t !5
1

N (
k51

N

exp@ ick~ t !#5:R~ t !exp@ iF~ t !#. ~1!

This global order parameter contains both the informat
about the instantaneous collective phaseF(t) and the instan-
taneous degree of phase coherence measured by the mo
R(t) at time t. Its square can be expressed in several wa

R2~ t !5
1

N2 H F (k51

N

cos@ck~ t !#G2

1F (
k51

N

sin@ck~ t !#G2 J
~2!

5
1

N2 F (
k,l 51

N

cos@ck~ t !2c l~ t !#G ~3!

5
1

N
1

2

N2 (
k51

N

(
l .k

N

cos@ck~ t !2c l~ t !#. ~4!

This quantity is termed synchronization index since it
widely used in the description of synchronization proces
@4#. From Eqs.~2! and~3! it is obvious that 0<R(t)<1 with
R(t)51 indicating perfect coherence.

We initialize the array by randomly selecting a phase
each of the rotors according to the uniform distribution
@0,2p). Thus, the quantityR05R(t50) is a random vari-
able. Its density contains important information because e
in the absence of any signal the array of rotors will gener
nonvanishing values ofR0. These have to be discriminate
from values ofR(t) which significantly indicate coherenc
induced by the passing stimulus. Figure 1 shows numeric
estimated densities, whereN510,100,1000,10 000 equidis
tributed phases were used to compute a single realizatio
the random variableR0. An analytic expression for thes
distributions can be derived by applying the central lim
theorem~Lindenberg-Le´vy theorem! to the following pair of
random variables:
©2002 The American Physical Society01-1
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XN5
1

N (
k51

N

cos@ck~0!#, YN5
1

N (
k51

N

sin@ck~0!#, ~5!

which yields for largeN the limiting density@5#

r~XN5x,YN5y!. ~N/p! exp@2N~x21y2!#. ~6!

Changing to polar coordinates (R0 ,F0) and integrating over
the angleF0 immediately leads to the Rayleigh distributio
~Fig. 1!

rN~R0!52NR0 exp~2NR0
2!. ~7!

Mean and variance of this distribution read

^R0&5
Ap

2

1

AN
, ^DR0

2&5F12
p

4 G 1

N
. ~8!

The integral

a~Rth!5E
Rth

`

2NR0 exp~2NR0
2!dR05exp~2NRth

2 ! ~9!

can be used to define a threshold valueRth by demanding
that a(Rth), which is the probability for false alarm, be les
than some fixed small number. For instance,Rth52/AN cor-
responds toa(Rth)<2% which means values larger tha
2/AN occur by random configuration with a probability o
less than 2%. In what follows we will useRth52/AN to
discriminate stimuli against the random configuration ba
ground.

FIG. 1. The density of the random variableR0 for different N
510,100,1000,10 000~top down!. The dots indicate the result o
numerical simulations whereas the full line identifies the Rayle
distributions~7!. Vertical lines mark the threshold set by the val
2/AN, which corresponds to a 2% level of false alarm.
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A standard model describing phase resetting by an ex
nal stimulus of strengthI is given by the following phase
dynamics@6#:

ċ5V1I cosc. ~10!

This dynamics can be illustrated as the overdamped mo
in a tilted corrugated potential landscape. IfI ,V no troughs
~minima! and barriers~maxima! exist and the phase contin
ues cycling forward (V.0) at varying speed. ForI .V two
fixed points emerge, which correspond to a minimum atp
2arccos(V/I ) and a maximum atp1arccos(V/I ). For con-
stantI the phase settles in the minimum (mod2p) regardless
of the initial position, which means the phase eventually
reset to the corresponding valuec* 5p2arccos(V/I ). The
situation is harder to analyze with a time varying stimul
I (t); the net effect will depend on many details of the stim
lus, e.g., the time scale of variation, the height of the sig
peak, etc.

Our detection setup would require to considerN such
phase equations each with its own time varying stimu
I k(x02xk2vt), wherex0 and v are the initial position~at
time t50) and the constant velocity of the traveling stim
lus, respectively. Irrespective of the details, the equation
motion will be too complicated to be solved analytically
closed form. If, however, the peak value of the stimulus
sufficiently high and the duration is short, we can simpl
the resetting mechanism: The passing stimulus resets
phaseck(t) to some global valuec* the very moment it is
at positionxk , i.e., the reset is instantaneous. After this re
the phase again increases linearly with its natural freque
Vk . The situation is sketched in Fig. 2. The history of pha
ck can thus be written as

ck~ t !5H ck~0!1Vkt, t,tk

c* 1Vk~ t2tk!, t>tk
~11!

~for all k51, . . . ,N), wheretk is the time when the stimulus
passes the oscillatork. Substituting this into Eq.~4! we find
the following value of the synchronization index:

h

FIG. 2. Sketch of the setup. The stimulus moves at cons
speedv relative to the oscillator chain. Each time it passes an
cillator the phase is reset toc* .
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R2~ t !5
1

N
1

2

N2 $Skk~ t !1SkN~ t !1SNN~ t !% ~12!

in the time intervaltk<t,tk11, where we denote

Skk~ t !5(
i 51

k

(
j . i

k

cos@V i~ t2t i !2V j~ t2t j !#, ~13!

SkN~ t !5(
i 51

k

(
j .k

N

cos@c* 1V i~ t2t i !2c j~0!2V j t#, ~14!

SNN~ t !5 (
i 5k11

N

(
j . i

N

cos@c i~0!1V i t2c j~0!2V j t#. ~15!

These expressions depend on the initial phasesc i(0) and the
natural frequenciesV i . We consider both quantities to b
random parameters of the model. To characterize the ne
fect of observing many realizations, i.e., to evaluate the m
performance of many individuals, we average the synchro
zation index over both the initial phases~equidistributed! and
the natural frequencies~Gaussian!. The first average over th
phases yields~for tk<t<tk11)

^R2~ t !&5
1

N
1

2

N2 (
i 51

k

(
j . i

k

cos@V i~ t2t i !2V j~ t2t j !#.

~16!

Note that the value ofc* is irrelevant for this expression
The second average over the natural frequencies results

^^R2~ t !&&5
1

N
1

2

N2 (
i 51

k

(
j . i

k

cos@V0~ t j2t i !#

3expH 2
h2V0

2

2
@~ t2t i !

21~ t2t j !
2#J . ~17!

In the following we relate time to the position of the stimul
x(t),

t5 @x02x~ t !#/v . ~18!

We can then derive an expression that reflects how the tw
averaged global synchronization index varies as a functio
the position of the stimulus over the linear detector cha
namely,

^^R2~x!&&5
1

N
1

2

N2 (
i 51

k

(
j . i

k

cosFV0

v
~xi2xj !G

3expH 2
h2V0

2

2v2 @~x2xi !
21~x2xj !

2#J ,

~19!

for xk11,x<xk . Assuming the oscillators to be distribute
along the linear chain in an equidistant manner, i.e.,xk
5(N2k)Dx for k51, . . . ,N with Dx5L/(N21), we find
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^̂ R2~x!&&5
1

N
1

2

N2(
i 51

k(x)

(
j . i

k(x)

cos@~ j 2 i !k#

3expH 2
h2k2

2
g~x,i , j !J , ~20!

where

g~x,i , j !5F x

Dx
2~N2 i !G2

1F x

Dx
2~N2 j !G2

~21!

andk(x)5min$int(N2x/Dx),N%. The parameterk turns out
to be related to the ratio of the travel time between t
neighboring oscillatorsDT5Dx/v and the mean rotation pe
riod T052p/V0, i.e., k52pDT/T0. It is useful to writek
52pm1d, wheremPN anddP@0,2p).

Equations~20! and ~21! present the central result of ou
model. The detection regions in thex-d plane, i.e., where
^̂ R2(xk)&& is larger than the threshold valueRth

2 54/N, is
shown in Fig. 3 forN5100 ~top! andN510 ~bottom!. It can

FIG. 3. Regions in which prey is detected in thex-d plane
defined by the demand that^̂ R2(x)&&.Rth

2 54/N. Top panel forN
5100, h50 ~black!, andh50.01 ~checkered plotted on top!. The
bottom panel compares the region forN510 and h
50, 0.01, 0.02, 0.03~light to dark gray plotted on top of eac
other! with N5100 andh50.01 ~checkered!. Each time the stimu-
lus passes a detector,^̂ R(x)&& changes discontinously and deca
for h.0.
1-3



ua

i

s

ea

fo

e
s

c

e

fr
on

the

al
ary
m-

yti-
by
ors.
lus
anta-
ed
or
e

n af-

ude
tion.
ion
ical

-
D

c
y
r

b
d
ho

as

ha-
ed,

RAPID COMMUNICATIONS
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be seen that detection works only as long as detuning, q
tified by d, and frequency spread, coded byh, are not too
large. Moreover, we find that the detection region shrinks
thed direction, but enlarges in thex direction with increasing
N, i.e., detection already works when the stimulus has pas
only a small number of oscillators. For smallh and smalld
we can consider the following limiting cases. First let us d
with the case of zero frequency spread, i.e.,h50. The
double sum over cosines can be performed yielding the
lowing expression:

^̂ R2~xk!&&h505
N2k1 @12cos~kd!#/@12cos~d!#

N2
,

~22!

which we exemplify forN5100 in Fig. 4. Depending on th
detuning parameterd, constructive or destructive effect
show up. Introducing the frequency spreadh.0 erodes both
the constructive and destructive effects. Note that the cy
numberm matters if h.0 whereas it is irrelevant for the
caseh50. In Fig. 5 we exemplify how the detection curv
for N5100,m51, and a detuning value ofd50.01p is
pushed below the detection threshold by an increasing
quency spreadh. These results indicate that the detecti

FIG. 4. Variation of the global synchronization index as a fun
tion of the stimulus positionx in the case of vanishing frequenc
spreadh50 for N5100. Depending on the detuning parameted
constructive or destructive effects of the array or rotors can
observed:d/p50, 0.01, 0.02, 0.03, 0.04 shown as solid, dotte
dashed, long-dashed, dot-dashed lines, respectively. The solid
zontal line marksRth

2 54/N.
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mechanism is rather sensitive with respect to the width of
frequency distribution for a large numberN of oscillators.
However, we would like to point out, that the biologic
relevance is not eradicated by this finding, since evolution
optimization offers an explanation how the confined para
eter range might have been realized.

In conclusion, we have presented a simplified but anal
cally tractable model for signal detection, which works
creating significant coherence in a chain of phase oscillat
This coherence is induced by a strongly localized stimu
that travels at constant speed and resets phases inst
neously. The ability to detect a stimulus rapidly is balanc
by the sensitivity to variations in the oscillator frequencies
deviations from the optimal velocity. The variations in th
frequencies, however, guarantee a fast desynchronizatio
ter the stimulus has passed.

Although our approach concentrates on seemingly cr
assumptions, it catches the main features of prey detec
Future experimental studies have to reveal in which direct
this model has to be extended to account for given biolog
applications.
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FIG. 5. Spatial variation of the global synchronization index
a function of the stimulus positionx in the case of varying fre-
quency spreadh for slight detuning, i.e.,d/p50.01, and form
51 andN5100. An increasing spread erodes the detection mec
nism: h50, 0.005, 0.01, 0.015 shown as solid, dotted, dash
long-dashed, respectively. The solid horizontal line marksRth

2

54/N.
s

@1# L. Wilkenset al., J. Exp. Biol.204, 1381~2001!; W. Wojtenek,
X. Pei, and L. Wilkens,ibid. 204, 1399~2001!.

@2# K.-T. Shiehet al., J. Exp. Biol.199, 2383~1996!; M.E. Nelson
and M.A. MacIver,ibid. 202, 1195~1999!; G. von der Emde,
ibid. 202, 1205~1999!.

@3# A. Neiman and D.F. Russell, Phys. Rev. Lett.86, 3443~2001!;
A. Neiman et al., ibid. 82, 660 ~1999!; R.W. Turner and L.
Maler, J. Exp. Biol.202, 1255~1999!.
@4# A. Pikovsky, M. Rosenblum, and J. Kurths,Synchronization–A

Universal Concept in Nonlinear Sciences~Cambridge Univer-
sity Press, Cambridge, 2001!.

@5# M. Fisz, Probability Theory and Mathematical Statistic
~Wiley, New York, 1963!.

@6# P. Tass,Phase Resetting in Medicine and Biology~Springer,
Berlin, 2001!; A.T. Winfree, J. Theor. Biol.28, 327 ~1970!.
1-4


